Operation of passive membrane systems for drinking water treatment.

نویسندگان

  • P A Oka
  • N Khadem
  • P R Bérubé
چکیده

The widespread adoption of submerged hollow fibre ultrafiltration (UF) for drinking water treatment is currently hindered by the complexity and cost of these membrane systems, especially in small/remote communities. Most of the complexity is associated with auxiliary fouling control measures, which include backwashing, air sparging and chemical cleaning. Recent studies have demonstrated that sustained operation without fouling control measures is possible, but little is known regarding the conditions under which extended operation can be sustained with minimal to no fouling control measures. The present study investigated the contribution of different auxiliary fouling control measures to the permeability that can be sustained, with the intent of minimizing the mechanical and operational complexity of submerged hollow fiber UF membrane systems while maximizing their throughput capacity. Sustained conditions could be achieved without backwashing, air sparging or chemical cleaning (i.e. passive operation), indicating that these fouling control measures can be eliminated, substantially simplifying the mechanical and operational complexity of submerged hollow fiber UF systems. The adoption of hydrostatic pressure (i.e. gravity) to provide the driving force for permeation further reduced the system complexity. Approximately 50% of the organic material in the raw water was removed during treatment. The sustained passive operation and effective removal of organic material was likely due to the microbial community that established itself on the membrane surface. The permeability that could be sustained was however only approximately 20% of that which can be maintained with fouling control measures. Retaining a small amount of air sparging (i.e. a few minutes daily) and incorporating a daily 1-h relaxation (i.e. permeate flux interruption) period prior to sparging more than doubled the permeability that could be sustained. Neither the approach used to interrupt the permeate flux nor that developed to draw air into the system for sparging using gravity add substantial mechanical or operational complexity to the system. The high throughput capacity that can be sustained by eliminating all but a couple of simple fouling control measures make passive membrane systems ideally suited to provide high quality water especially where access to financial resources, technical expertise and/or electrical power is limited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on Microbiological Quality of Rural and Urban Drinking Water in Distribution Systems of Ijroud, Zanjan in 2013-2015

Background: Providing safe drinking water has critical importance to human societies. The aim of this study was to investigate microbiological quality of drinking water in distribution system of urban and rural regions of Ijroud, in Zanjan province.   Materials and Methods: In present descriptive study, the microbiological examination of drinking water was conducted in 15 facilities with...

متن کامل

Study on Operational Conditions to Minimize Membrane Fouling in Membrane Bioreactor (MBR) System for Wastewater Treatment-Preliminary Pilot Tests

In this study, effect of antiscalant usage on minimizing of membrane fouling due to high water hardness during wastewater treatment tests run by a pilot-scale membrane bioreactor (MBR) system. The membranes used in these studies were Kubota flat sheet MBR membranes made from polyethylene with a pore size of 0.4 micrometer. Preliminary tests were carried out with tap water...

متن کامل

Effects of TiO 2 nanostructure and various ceramic supports in photocatalytic membranes for water treatment

The growing need for clean drinking water worldwide is one of the pressing issues of this century. The World Health Organization estimates that in 2005, 1.6 million children under the age of 5 died from causes due to unsafe drinking water. Low-pressure membrane filtration systems are likely to play an important role in water purification and reuse strategies. While these systems have low-cost a...

متن کامل

Optimization of a Membrane Filtration Process for Drinking Water Treatment Using Fluorescence-Based Measurements

Membrane fouling control is of paramount importance for sustainable operation of membranebased drinking water treatment processes. Natural organic matter (NOM) is considered as the major membrane foulant and therefore its characterization is important for implementing fouling control strategies. This study proposes a fluorescence-based modeling approach for estimating and predicting the fouling...

متن کامل

Chemical and microbiological analysis of surface and ground drinking water quality

Drinking water has received considerable attention recently. However, misuse and mismanagement have resulted in a rapid and widespread decline in source-water quality and supply. Water quality guidelines can be used to identify constituents of concern in water, to determine the levels to which the constituents of water must be treated for drinking purposes. Membrane technology for the water cyc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2017